Grant Agreement 723600
LASIMM
Large Additive Subtractive Integrated Modular Machine

Deliverable 6.1
Project graphic identity and website

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723600.

Information is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. This document reflects only the author’s view and that the Commission is not responsible for any use that may be made of the information it contains.
<table>
<thead>
<tr>
<th>Grant Agreement Number: 723600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title: Large Additive Subtractive Integrated Modular Machine</td>
</tr>
<tr>
<td>Project Acronym: LASIMM</td>
</tr>
<tr>
<td>Start Date: October 2016</td>
</tr>
<tr>
<td>EC Project Officer: Barry Robertson</td>
</tr>
<tr>
<td>Deliverable Number: D6.1</td>
</tr>
<tr>
<td>Work Package Number: WP6</td>
</tr>
<tr>
<td>Date of Delivery: M3</td>
</tr>
<tr>
<td>Status:</td>
</tr>
<tr>
<td>Deliverable Type:</td>
</tr>
<tr>
<td>Other ☐</td>
</tr>
<tr>
<td>Distribution Type:</td>
</tr>
<tr>
<td>Authoring Partner: EWF</td>
</tr>
<tr>
<td>Contact Person: André Cereja</td>
</tr>
<tr>
<td>Email: afcereja@ewf.be</td>
</tr>
<tr>
<td>Abstract (for dissemination):</td>
</tr>
<tr>
<td>Keywords:</td>
</tr>
<tr>
<td>Name of the Scientific Representative of the Project’s Co-ordinator, Title and Organisation:</td>
</tr>
<tr>
<td>Tel: (+351) 214 228 113</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Final</td>
</tr>
</tbody>
</table>
1 Table of contents

2 Executive summary ... 4
3 Introduction .. 5
4 Description of work .. 6
 4.1 Project graphic identity ... 6
 4.2 Project website ... 8
 4.2.1 Disclaimer .. 8
 4.2.2 Home .. 8
 4.2.3 About .. 10
 4.2.4 Objectives ... 11
 4.2.5 Documents ... 12
 4.2.6 Partners .. 13
 4.2.7 Contact Us .. 16
5 Conclusions ... 17
Annex A .. 18
2 Executive summary

The LASIMM project aim is to develop a large scale flexible hybrid additive/subtractive machine based on a modular architecture which is easily scalable. The machine will feature capabilities for additive manufacture, machining, cold-work, metrology and inspection that will provide the optimum solution for the hybrid manufacturing of large engineering parts of high integrity, with cost benefits of more than 50% compared to conventional machining processes.

This deliverable 6.1 is created in accordance with the description of work of Work Package 6 of LASIMM, particularly Task 6.1, Dissemination. Amongst others, this task specifies the need to develop the LASIMM graphical identity, together with a project logo and its associated colours. The created colour scheme and logo will accompany the project during its entirety, as an harmonised way of transmitting the project image to the public.

Together with this, a project website is also created at the beginning of the project. The website is hosted in the www.lasimm.eu domain. The website will act as the main information repository regarding the project. It contains several sections, each one dedicated to a specific set of information. The objective is to keep the most updated information about the project developments available both for all the project stakeholders.

The work package leader is EWF (contact details: André Cereja, afcereja@ewf.be).

Figure 1 – Project Logo

Figure 2 – Website homepage
3 Introduction

This document contains the description of the work performed in the creation of the LASIMM project graphical identity, as well as the project website.

The creation of a project logo and colour scheme helps in assuring that all the materials created during the project feature the same visual identity. This is an important step in disseminating the LASIMM brand to the public.

The main objective of this website is to serve as a vehicle for the dissemination of the project activities and results. The project website was planned to be delivered in the initial stage of the project, to help the information sharing among the consortium members and between the consortium and the public. This document also summarizes the design, creation and maintenance of the LASIMM project website, available at www.lasimm.eu. The website is part of Work Package 6 – Dissemination, exploitation, standardisation and training, which aims at ensuring that the project results reach a wider audience beyond the consortium. The website serves as an efficient and effective information and communication system for the consortium members and other project stakeholders.
4 Description of work

4.1 Project graphic identity

For the LASIMM consortium, it was important to have a clearly defined, unique visual identity, available from the very start of the project, which can be used both in printed and digital media. During the proposal preparation stage, a draft logo was developed, to support the proposal writing. After the approval of the project, it was decided to discard this initial design, and to re-think the logo to better suit the dissemination needs of the project, as well as the machine concept.

The LASIMM branding is to be easily recognized and remembered. It should also match the machine concept, particularly its fabrication capabilities (additive and subtractive manufacturing).

A team of designers from Foster + Partners produced a set of branding options, which were circulated by the WP leader for reviewing and approval inside the entire consortium. The full details of the various branding versions can be seen in Annex A.

After the comments were received and the partners casted their vote, a final version of the logo was agreed upon. The LASIMM logo is shown next:

![LASIMM Logo](image)

Figure 3 – LASIMM logo

This logo is meant to be simple, clear, and relatable to the project. This logo showcases the main features of LASIMM: the additive and subtractive components of the machine concept. The layering of verticals illustrates the additive process, while the sharp edged right hand verticals show the subtractive process in contrast to the rounded left hand side. The logo also gives an idea of the three-dimensional production of components.
The logo is available in two other colours (black and grey), to match different applications and backgrounds. Variants of blue are also to be used, thus making the full colour pallet of LASIMM’s visual identity. The minimum logo size is specified as well. This information is displayed next, in Figure 4 and Figure 5:

![Figure 4 – Logo colour variants](image)

![Figure 5 – Minimum logo size and colour palette](image)
4.2 Project website

The project website is available for the following URL: www.lasimm.eu. The website is structured in six main tabs: Home, About, Objectives, Documents, Partners and Contact Us.

The aim is to have a continuous updating of the information on the website with the progress and public results, meetings, events and any useful links.

The website development and updating is the responsibility of EWF.

4.2.1 Disclaimer

The Disclaimer is always available in the bottom of the page in every tab available.

Figure 6 - Disclaimer

4.2.2 Home

The Home tab is the one presented when a visitor enters the website.

There, a banner contains 2 images that appeal to the visitor, one related to the WAAM process, another to the machine concept. Below, a list of four icons together with short sentences list different project aspects.

The news feed is then located at the bottom of the Home page, to be continuously updated during the project. At the creation of this document, three news are featured:

- Article regarding the project kick off meeting, hosted by the co-ordinator;
- Article on the project presentation made in the Additive Manufacturing European Forum, in Brussels;
- Article on the meeting that took place in London, to discuss the end-user requirements.
Figure 7 - Home page
4.2.3 About

The About tab contains a summary of the LASIMM project scope, and main features.

LASIMM Project

Manufacturing has been using conventional and additive, many different processes that can be classified as subtractive or additive processes. Traditionally, these processes have been implemented in tandem on a single or multiple stages basis. However, their application in metal and composite industries has been limited due to the inherent properties of the materials used. The LASIMM project aims to address this gap by developing a single, streamlined process that combines the benefits of both subtractive and additive processes into a single platform, creating a new manufacturing process.

Additive Manufacturing (AM) has a great potential for having a major impact on the production of component parts. AM would likely be the first step in the production of engineering sectors such as energy, healthcare, aerospace, transportation and construction. LASIMM is a highly ambitious project, which will culminate in the world's largest metal 3D printer capable of producing fully finished components directly from a CAD drawing. The key process technologies that have been identified for this project include critics, which enables the manufacturing cycle, and inspection. The unique aspects of this machine are represented by the addition of innovative and flexible processes for creating and testing these platforms that are already available on the market.

Advances brought by LASIMM

- A module of tool control platform that integrates the software tools for the design, simulation, and testing of the components.
- A database of metal alloys and composite materials for the selection of the most suitable materials for the project.
- A software package capable of handling the properties of the metal alloy.

Figure 8 – About tab
4.2.4 Objectives

The Objectives tab lists the main expected results of LASIMM, together with the Benefits and project Impact. A rolling set of images of related to the industrial sectors of the three end users is also featured.
4.2.5 Documents

The Documents tab is still in development at the moment. Its main point is to share documents with the public, being possible their downloads.

Currently, it contains 2 publicly available files, the project Press Release and a short Project Presentation. As the project progresses, this section will be populated with more contents.

Figure 10 - Documents tab
4.2.6 Partners

In the Partners tab it is possible to see all the partners involved in the project along with a brief description on their own companies and links to their websites.

Meet Our Partners

The LASIMM project aims to develop a large scale flexible hybrid additive/subtractive machine based on a modular architecture which is easily scalable. The machine will feature capabilities for additive manufacturing, machining, cold work, metrology and inspection that will provide the optimum solution for the hybrid manufacturing of large engineering parts of high integrity, with cost benefits of more than 50% compared to conventional machining processes.

A key part of this project is the development of ICT infrastructure and toolboxes needed to programme and run the machine. The implementation of parallel manufacturing is extremely challenging from a software perspective and this will be a major activity within the project.

To deliver this extremely ambitious project, a well-balanced expert team has been brought together. There are ten partners comprising six companies, two universities and two research institutes. Two of the companies are SMEs and there are three end users from the renewable energy, construction and aerospace sectors. The consortium also features the whole of the supply chain needed to produce such a machine.

EWF

About: EWF – European Federation for Welding, Joining and Cutting is an international non-profit association aiming at the collaboration in the study and solution of welding related problems encountered within its fields of competence and in the renewal of technical norms. The exchange of scientific and technical information, the preparation of harmonised rules for the education and training of personnel involved in welding, joining and related technologies, and the encouragement of projects for co-operative research enable EWF to act as the representative of the welding community in Europe.

Contacts: www.ewf.ie

BAE Systems

About: BAE Systems is a global defence, aerospace and security company employing around 85,000 people worldwide. Our wide-ranging products and services cover air, land and naval forces, as well as advanced electronics, security, information technology and support services. Working with customers and local partners, we develop, engineer, manufacture and support products and systems to deliver military capability, protect national security and people and keep critical information and infrastructure secure.

Contacts: www.baesystems.com

Foster + Partners

About: Foster + Partners is one of the most innovative architecture and integrated design practices in the world. Over the past four decades the practice has pioneered a sustainable approach to architecture through a strikingly wide range of work, from urban masterplanning, public infrastructure, airports, civic and cultural buildings, offices and workplaces to private houses and product design. Based in London, with offices worldwide, the practice has an international reputation, with buildings in six continents.

Contacts: www.fosterandpartners.com
Vestas

About: Vestas is a global energy company dedicated exclusively to wind energy - improving business case certainty and reducing the cost of energy for our customers. Vestas works in close partnership with customers to offer the most effective solutions towards energy independence. Our core business is the development, manufacturing, sale and maintenance of wind power plants - with competencies that cover every aspect of the value chain from site studies to service and maintenance.

Contacts: www.vestas.com

Cranfield University

About: At the forefront of aerospace and manufacturing technology for over 50 years, Cranfield University (CU) takes a practical and holistic approach to research. Inter-university collaboration delivers multidisciplinary solutions to the complex challenges facing the aviation and manufacturing industries. The University is one of the largest academic centres in Western Europe for strategic applied research, and has decades of experience working closely with partners across the globe including governments, regulatory agencies, research councils and other academic collaborators. The excellence of the manufacturing department is widely recognised; the manufacturing department was ranked Top 2 in the UK for research power. The Welding Engineering and Laser Processing Centre (WELPC) which is within the manufacturing department specialises in fundamental, strategic and applied research in the area of advanced joining processes, laser processing and high deposition rate additive manufactured structures.

Contacts: www.cranfield.ac.uk

Global Robots Ltd

About: Global Robots Ltd is a company based in the UK that buys, refurbishes and sells new and used industrial robots and robot spare parts. We started in 2004 with the goal of making robots affordable to the wider market than ever before by supplying high quality, used robotic equipment at low prices. We buy and sell robots in large numbers enabling us to keep prices competitive. We have over 50 robots in stock here in Bedfordshire with many more located at our facilities in The Netherlands and India. Focusing on the supply of robots rather than their installation, we sell robots from all the main manufacturers including ABB, Fanuc, Motoman and Kuka. We also build robotic systems for welding, handling, riveting etc and supply to customers all around the world.

Contacts: www.globalrobots.com
Figure 11 – Partners tab
4.2.7 Contact Us

The Contact Us tab main objective is to allow the public in general that can be interested in the project results to know, or to have a direct contact with the consortium.

This contact form is received by the project coordinator, EWF.

Figure 12 – Contact Us tab
5 Conclusions

This document contains the information related to the LASIMM project selected graphic identity (logo and colour scheme), together with an overview of the project public website.

Screen captures are provided for the several webpages of the website (www.lasimm.eu).

As mentioned before, the website will be constantly updated throughout the project duration, to provide accurate, up to date information to the project stakeholders.
Annex A

Route 1

Logotype lockup 1.0
Brand adaptable for print
Adaptable for digital applications

Route 1 (Alternatives)
Clean/elegant/muted/corporate.
Reflective of both additive and subtractive processes
Logotype lockup 1.1

Layering of verticals illustrates additive process, whilst reduction of line weights illustrates subtractive process.

Adaptable for digital applications
Logotype lockup 1.2

Indicative of 3D production
Layering of verticals illustrates additive process, whilst the positive verticals are removed and negative left illustrates the subtractive process.
Logotype lockup 1.3

Indicative of 3D production
Layering of verticals illustrates additive process, the sharp edged right hand verticals show the subtractive process in contrast to the rounded left hand side.
5 key points allow full range of movement
Multiple combinations of movement

Unique identities under the same brand
Example business card visual